

HYDRAULIC TURBOMACHINES

Exercises 7 Industrial pumps

Pumped storage power plant

The Veytaux pumped storage power plant is operated by FMHL SA, Forces Motrices Hongrin-Léman, since 1970. The FMHL+ project doubled the capacity of the existing power plant by constructing Veytaux II, a new underground powerhouse with two ternary units. A cut-view of part of one of two hydrolectric units is given in Figure 1.

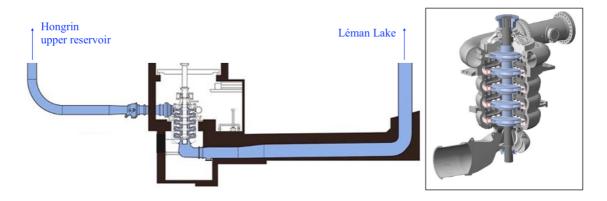


Figure 1 – Veytaux II, cut view of the multistage pump and part of the hydraulic circuit (left).

3D view of the multistage pump (right). Retrieved from www.alpiq.com

Pumping mode. In Veytaux II, each multistage centrifugal pump installed in the two ternary units features the following specifications:

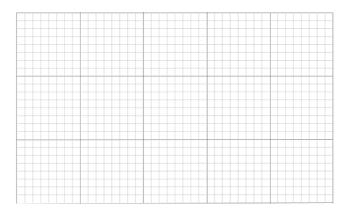
- Rotation speed $N = 600 \text{ min}^{-1}$
- Stage specific hydraulic energy $E_s = 1800 \text{ J} \cdot \text{kg}^{-1}$
- Total pump efficiency $\eta = 89\%$
- Bearing and disk friction losses: 1%
- Total volumetric losses: 2%
- Impeller inlet diameter $D_{\bar{1}_e} = 1.32 \text{ m}$
- Shaft diameter $D_{shaft} = 0.68 \text{ m}$
- Tailwater level $Z_{\bar{R}} = 170 \text{ m}$

and the following physical conditions apply:

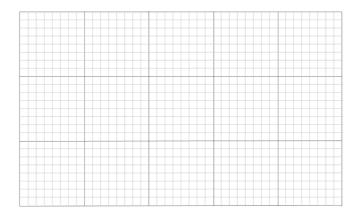
- Atmospheric pressure $p_a = 101325 \text{ Pa}$
- Water density $\rho = 998 \text{ kg} \cdot \text{m}^{-3}$
- Saturated vapor pressure $p_{vap} = 2343 \text{ Pa}$

- Gravity acceleration $g = 9.81 \text{ m} \cdot \text{s}^{-2}$.
- 1. How many stages can you recognize in the pump?
- 2. Several aspects/parameters are responsible of the onset of cavitation in a centrifugal pump in operation. Answer to the following questions regarding the cavitation phenomena inception:
 - a. Which parameter set during the design phase of the storage pump <u>installation</u> (i.e. not modifiable during operation) should be carefully determined to reduce this risk?
 - b. Which parameter that can be <u>modified during operation</u> has a strong impact on the cavitation onset? Is there an optimal operating condition regarding this parameter to minimize the risk of cavitation inception? If yes, what does this operating condition represent?
- 3. During lectures, we saw that not only the incidence angle β_{le} has an influence, but the relative outlet flow angle β_{le} has also an impact on the ideal condition of operation. Unfortunately, in real operation, this angle can never be optimal. Answer to the following questions:
 - a. This deviation from the ideal scenario prevents the fulfilment of a particular condition: which one?
 - b. From a geometrical point of view, which dimension we refer to understand that β_{le} does not fulfill this condition?
 - c. Which <u>vector component</u> of the outlet velocity triangle, lower compared to its ideal value because of this occurrence, describes the slip? Justify expressing the related equation.
- 4. Compute Z_{ref} , the setting elevation of the pump, to achieve a net positive suction head (NPSH) of 13.4 m.
- 5. Compute the rated discharge value Q, assuming the <u>stage</u> unit specific speed is $n_{q,s} = N \times \frac{Q^{1/2}}{H^{3/4}} = 40.8 \text{ (SI)}. \text{ Remember that unit factors are calculated with N in min}^{-1}.$
- 6. Compute the specific energy E of the pump and the hydraulic power. Then, using the correct efficiency term, deduce the input power P.
- 7. Deduce the transformed specific energy $E_{t,s}$ for one stage.

Let's now have a closer look to the water flux. For this operating condition, it is assumed that the inlet velocity $\tilde{C}_{\bar{1}}$ is axial and uniformly distributed. The outlet flow is also radially uniform. All the flow distribution coefficients k_{cu} and k_{cm} of global Euler equation, defined as follows, are then assumed equal to 1.


$$E_{t,s} = k_{Cu_1,} U_{1e} C u_{1e} - k_{Cu_{\bar{1}}} U_{\bar{1}e} C u_{\bar{1}e}$$

Moreover, the outlet velocity diagram corresponds to the maximum specific energy transfer.


8. Justify that in this case the global Euler equation reduces to $E_{t,s} = U_{1e}Cu_{1e}$.

19.12.2024 EPFL Page 2/3

- 9. Express Cu_{1e} as a function of U_{1e} , Cm_{1e} and β_{1e} .
- 10. By mean of the expression computed in question 9) and the Euler equation, find an expression for the discharge to maximize the transferred power per stage, P_{rs} .
- 11. Deduce that, for this optimal discharge condition, the relation $Cu_{1e} = \frac{U_{1e}}{2}$ holds.
- 12. Knowing the transformed specific energy per stage calculated in question 8), compute the impeller outlet diameter D_{le} .
- 13. Compute the meridional component at the impeller outlet Cm_{1e} . Consider the impeller channel height $B_1 = 0.17$ m.
- 14. Compute the outlet absolute flow angle α_{1e} .
- 15. Compute the meridional component at the impeller inlet Cm_{T_0} .
- 16. Compute the inlet relative inlet flow angle β_{T_a} .
- 17. Sketch properly the velocity diagrams at the inlet and outlet of one impeller. Use the grid provided hereafter.

Impeller Inlet Velocity Diagram

Impeller Outlet Velocity Diagram

19.12.2024 EPFL Page 3/3